Modulation of AIRS Mid-tropospheric CO₂ by the Large-scale Circulations

Xun Jiang¹, Edward Olsen², Thomas Pagano², and Yuk Yung³

¹ Department of Earth & Atmospheric Sciences, Univ. of Houston

² Science Division, Jet Propulsion Laboratory, Caltech

³ Division of Geological & Planetary Sciences, Caltech

NASA Sounder Science Team Meeting, Sep 30-Oct 2, 2014

Overview

- Motivation
- Data
- Comparisons Between Satellite CO₂ with *In-situ* Measurements
- ➤ Influence of South Atlantic Walker Circulation on CO₂
- Conclusions

Motivation

- ➤ Improve understanding of CO₂ variability and its effect on the global climate change using satellite data
- Investigate how natural variability influence the CO₂ distribution
- ➤ Improve CO₂ simulations from chemistry-transport models in the future

Previous Results from AIRS Mid-trop CO₂

- ➤ Significant spatiotemporal variability in the AIRS CO₂, which is supported by the aircraft observations [Chahine et al., GRL 2008].
- ➢ In addition to the annual cycle [Pagano et al., 2014], there is also a semi-annual oscillation in the CO₂ [Jiang et al., GBC 2012; Ruzmaikin et al., JClimate 2012].
- ➤ AIRS mid-tropospheric CO₂ concentrations can be modulated by the interannual variability (e.g., ENSO and Northern Annular Mode) [Jiang et al., GRL 2010; Jiang et al., JAS 2013a].
- ➤ During a strong (weak) monsoon year, the western Walker Cell is strong (weak), resulting positive (negative) CO₂ anomalies in the AIRS mid-tropospheric CO₂ over the Indo-Pacific region [Wang et al., GRL 2012].
- ➤ AIRS mid-tropospheric CO2 concentrations increase by 2-3 ppm within a few days after the Stratospheric Sudden Warming events [Jiang et al., JAS 2013b]. 4

Data

➤ Satellite CO₂ Retrievals

1. Atmospheric Infrared Sounder (AIRS) V5 Mid-tropospheric CO₂ [Chahine *et al.*, 2005; 2008]

Period: Sep 2002 – Present; Sensitivity Peak: 500-300 hPa

2. ACOS/Greenhouse gases Observing SATellite (GOSAT) B3.4 Column CO₂ [Crisp *et al.*, 2012; Wunch *et al.*, 2011; O' Dell *et al.*, 2012]

Period: Apr 2009 - Present

3. Tropospheric Emission Spectrometer (TES) Mid-tropospheric CO₂ [Kulawik *et al.*, 2012]

Period: Jan 2006 – Present; Sensitivity Peak: 511 hPa

> In-situ CO₂ Data

- 1. NOAA ESRL Cooperative Air Sampling Network Surface CO₂ [GLOBALVIEW-CO₂, 2010]
- 2. TCCON Column CO₂ measured by Fourier Transform Spectrometer [Washenfelder *et al.*, 2006; Macatangay *et al.*, 2008]

Model

- ➤ 3-D MOZART-2 Chemistry and Transport Model Resolution: 2.8°x2.8° (lat x lon); 45 vertical layers (0-50 km) Meteorology: ECMWF Interim Meteorological Data Boundary Condition: CO₂ Surface Fluxes (Biomass burning [Randerson et al., 2013], Fossil Fuel [Boden et al., 2013], Ocean [Takahashi et al., 1997], Exchange Between Biosphere and Atmosphere [Olsen and Randerson, 2004; van der Werf et al., 2006])
- ➢ 3-D CarbonTracker 2013 Chemistry and Transport Model Resolution: 3°x2° (Ion x lat); 34 vertical layers Meteorology: ECMWF Operational Forecast Model & ECMWF-Interim Boundary Condition: CO₂ Surface Fluxes (Biomass burning [Randerson et al., 2013], Fossil Fuel [Oda and Maksyutov, 2011], Ocean [Jacobson et al., 2007], Exchange Between Biosphere and Atmosphere [Olsen and Randerson, 2004; van der Werf et al., 2006])

Comparison Between Satellite CO₂ with *In-situ* Observations

—— AIRS mid-tropospheric CO₂

—— GOSAT column CO₂; —— TES lower mid-tropospheric CO₂

NOAA ESRL Surface CO₂; △ TCCON column CO₂

Comparison Between Satellite CO₂ with *In-situ* Observations

CO₂ Annual Cycle and Semiannual Cycle Amplitudes

——AIRS mid-tropospheric CO₂

——GOSAT column CO₂; ——TES lower mid-tropospheric CO₂

• NOAA ESRL Surface CO₂

Δ TCCON column CO₂

Model CO₂ Annual Cycle and Semiannual Cycle Amplitudes

MOZART CO₂ (Dotted line) & CarbonTracker CO₂ (Dash-dot line)

AIRS CO₂ in DJFM Averaged from 2003 to 2010

Solid White Contours: Sinking Air; Dotted White Contours: Rising Air

CO₂ difference is ~ 1 ppm between South Atlantic Ocean and South America.

South Atlantic Walker Circulation

Sinking air brings high-altitude low concentrations of CO₂ to the mid-troposphere over South Atlantic Ocean.

Rising air brings surface high concentrations of CO₂ to the mid-troposphere over South America.

Influence of South Atlantic Walker Circulation on CO₂

Influence of South Atlantic Walker Circulation on CO₂

AIRS mid-tropospheric CO₂ difference correlates well with the inverted and detrended 400 hPa vertical pressure velocity difference between South Atlantic and South America.

Conclusions

- ➤ Zonal averaged CO₂ for three satellite data sets (AIRS, GOSAT, and TES) are consistent with the surface and TCCON column CO₂ data.
- \succ CO₂ annual cycle and semiannual cycle amplitudes decrease with altitudes. Model convolved CO₂ annual cycle and semiannual cycle amplitudes are similar to those from the satellite CO₂ retrievals.
- ► Low concentrations of CO₂ are seen over the Southern Atlantic Ocean, which is related to the sinking branch in the Atlantic Walker Circulation.
- ➤ AIRS mid-tropospheric CO₂ difference correlates well with the inverted and detrended 400 hPa vertical pressure velocity difference between South Atlantic and South America. AIRS CO₂ can be used as an innovative observational constraint on the simulation of large-scale circulation in climate models.

Acknowledgements

Edward Olsen, Thomas Pagano, David Crisp, Charles Miller, Susan Kulawik, Maochang Liang, Luke Chen, Hui Su, Yuk Yung

Thank you!